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Abstract—Over the past decades, numerous approaches were
proposed to help practitioner to predict or locate defective files.
These techniques often use syntactic dependency, history co-
change relation, or semantic similarity. The problem is that, it
remains unclear whether these different dependency relations
will present similar accuracy in terms of defect prediction and
localization. In this paper, we present our systematic investigation
of this question from the perspective of software architecture.
Considering files involved in each dependency type as an indi-
vidual design space, we model such a design space using one
DRSpace. We derived 3 DRSpaces for each of the 117 Apache
open source projects, with 643,079 revision commits and 101,364
bug reports in total, and calculated their interactions with defec-
tive files. The experiment results are surprising: the three depen-
dency types present significantly different architectural views,
and their interactions with defective files are also drastically
different. Intuitively, they play completely different roles when
used for defect prediction/localization. The good news is that the
combination of these structures has the potential to improve the
accuracy of defect prediction/localization. In summary, our work
provides a new perspective regarding to which type(s) of relations
should be used for the task of defect prediction/localization. These
quantitative and qualitative results also advance our knowledge
of the relationship between software quality and architectural
views formed using different dependency types.

Index Terms—Software Structure, Software Maintenance, Soft-
ware Quality.

I. INTRODUCTION

Over the past decades, numerous approaches were proposed

to help practitioner to predict or locate defective files [1–

7], and various dependency structures were used as the basis

for bug prediction/localization algorithms. To the best of

our knowledge, three types of dependency relations have

been frequently and intensively used by researchers: syntactic

relation (derived from source code, such as inheritance and

method call), history relation (derived from the commit history

of a project, mainly co-change frequency among files), and

semantic relation (derived from identifiers and comments, and

calculate the similarity among software entities). All of these

three relations have been used as features to predict or locate

software defect. The problem is that, it is not clear if and to

extent these dependency relations differ from each other. Prior

research focused on prediction/localization algorithms, but not

on the underlying dependency types, a more fundamental

question.

Ting Liu is the corresponding author.

In this paper, we explore the following research questions:

For these three dependency relations, to what extent are

their structures similar to each other? There are a large

number of publications on using one of them to predict/locate

defects and reported reasonably performance. It is intuitive

that these dependency structures should be highly similar.

We are interested in quantifying the similarity among these

dependency structures to test this intuition.

If and to what extent will these three dependency relations

present similar performance in defect prediction and localiza-

tion tasks? It is unclear whether they have similar relations

with error-prone files. If the answer is yes, it means that

there is no fundamental difference among these dependency

relations. However, if the answer is no, we need to further

investigate the next question.

Whether the combination of these three dependency struc-

tures has the potential to improve the performance of defect

prediction and localization? If the answer is no, it implies

that these different structures can not be effectively and

efficiently used together, and we should consider which one

to choose. If yes, we further explore how the intersection and

union of these three relations contribute to software defects

prediction/localization.

To answer these questions, we need to systematically in-

vestigate the impact of these dependency structures and their

relations with defective files. The ideal approach would be us-

ing these dependency types to conduct bug prediction/location

analyses and make a comparison. However, it is not realistic

given the large number of existing tools and algorithms. More-

over, these prediction/classification models are black boxes,

hiding the intrinsic relations between these software structures

and defective files. Instead, we try to reveal the relations by

reversely explaining defects from the perspective of software

architecture views (white box), as shown in Fig. 1.

We employ the DRSpace [8, 9] model, a state-of-the-art

reverse engineering and architecture modeling technique, to

support our study. A DRSpace can be used to model the overall

software architecture as multiple overlapping design spaces.

Each design space can only capture one of many possible

relations. The DRSpace model is also an effective approach to

analyzing software structures in a fine-grained way.

In this paper, we report our comprehensive empirical study

to investigate the relation of three dependency types (syntactic,
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history, and semantic) with software defects. We intensively

studied 117 Apache open source projects with 643,079 revi-

sion commits and 101,364 bug reports. Using DRSpaces, for

each dependency type, we calculate the interaction between

its design space and defective files. Based on these data, we

answer the three research questions as follows:

First, comparing the structures formed by syntactic rela-

tion, history relation, and semantic relation, only 25% of

these structures are similar. This result implies that these

three dependency relations form drastically different archi-

tecture views. Intuitively, their effectiveness on defect predic-

tion/localization should be very different and it is imperative

to explore their influences on software defects.

Second, the syntactic, history, and semantic relations capture

different subsets of defective files. The syntactic structure cap-

tures the largest number of defective files but with the lowest

accuracy. By contrast, the history structure covers the least

number of defective files but with high accuracy. The semantic

structure is in-between. It implies that, although there are rich

literature on using one dependency structure to predict/locate

software defects, we should be aware of their significant

differences. We need a comprehensive understanding regarding

to the relation between dependency types and defects.

Third, the combination of syntactic structure, history struc-

ture, and semantic structure has the potential to effectively

improve the performance of defect prediction/localization: the

union of them can cover most of the defective files, and

their intersections can capture files with most severe problems.

We present the detailed results in Section III. The design of

strategies to flexibly combine these three structures to improve

the prediction/localization accuracy is future work.

The contribution of our work is:

• A systematic comparative analysis of different types of

dependencies and their impact on defects. Our empirical

study has revealed, for the first time, their drastically

different relations with defective files, which advanced

our understanding of three dependency types.

• A new perspective to analyze the software defects. Our

empirical study revealed that different dependency struc-

ture captures drastically different subsets of defective

files. When a bug prediction/localization algorithm is

devised, the designer should take their differences into

account. The union of all three relations can capture more

buggy files, but their intersection may capture most severe

bugs. Each option comes with costs and benefits.

• A benchmark to investigate the relation between software

defects and various dependency structures. We collected

117 Apache open projects involving 643,079 revision

commits, and 101,364 bug reports. All original data and

extracted dependencies are publically available1.

The rest of the paper is organized as follows: Section II

presents the related work. Section III and IV introduce our

methodology and experiment results. Section V presents the

1https://github.com/cuidi34/ICSE19-Data.git

Fig. 1: Predicting Defects vs Explaining Defects

discussion. Section VI presents the threats to validity. Section

VII concludes the paper.

II. RELATED WORK

A. Using Dependency Structures to Predict Defects

Over the past decades, using various dependency structures

to predict software defects has been widely studied [1–7]. We

summarized classical defect prediction framework in Fig. 2,

which contains three steps: 1) generating dependency struc-

tures, 2) deriving structural measurements, and 3) training

prediction models. In each step, researchers designed various

strategies to improve the accuracy of defect prediction. For

example, within the first two steps, Selby and Basili [1] first

studied syntactic metrics to predict bug-prone files. Nagappan

et al. [2] also derived complexity metrics based on syntactic

structures to improve prediction accuracy. Zimmermann et al.

[3] reported that syntactic-based network measures could be

used to construct successful defect predictor. Furthermore,

Cataldo et al. [4] derived change density metrics to mea-

sure history structures for defect prediction. Lin et al. [6]

used advanced machine learning algorithms to automatically

measure semantic structures to improve prediction accuracy.

For the third step, researchers also employed several machine

learning algorithms to train classification models to improve

the accuracy of defect prediction. For instance, Li et al.

[10] leveraged ensemble and kernel learning algorithms in

defect prediction to improve the training model. Di Nucci [11]

proposed an adaptive method to dynamically select classifiers

for defect prediction tasks. Our work aims to advance our

understanding regarding to the impact of different software

dependency types on defect prediction/localization, but not to

propose a new prediction/localization approach.

B. Reverse Engineering Techniques

Reverse-engineering is a technique to recover high-level

design from source code. Over the past decades, there are rich

literature about reverse engineering techniques [12–15]. These

techniques first aggregate program entities, such as files or

classes, into modules based on different rationales. For exam-

ple, Algorithm for Comprehension-driven Clustering (ACDC)

[12] is a pattern-driven technique proposed by Tzperpos and

Holt, which clusters entities based on naming conventions and

syntactic structures. Architecture Recovery Using Concerns
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Fig. 2: Classic Defect Prediction Framework

(ARC) [13] is a NLP-based techniques proposed by Joshua

et al. that leverages semantic structures. Back et al. [16] first

leveraged the combination of history and syntactic structures

to improve the quality of recovered design. Mitchell et al.

also proposed a genetic method named Bunch, which improves

reverse engineering results by optimizing objective functions

[17]. Researchers also made systematic comparisons of these

techniques: Nenad et al. [18] conducted a comparative study of

10 reverse engineering techniques and claimed that ARC and

ACDC outperformed others in terms of accuracy. Luttellier et

al. [19] conducted another comparative study and made similar

observations. Our work uses reverse engineering methods

to understand different dependency types but not to recover

architecture.

C. Architectural Smells

Architectural smells were proposed to describe problematic

relations among files that may have negative impact on soft-

ware quality. Researchers proposed architectural smells based

on different dependency types. For instance, Garcia et al.

[20] first defined a suite of code smells based on syntactical

structures. Ran et al. [21] integrated history and syntactical

relations and proposed a suite of architectural smells called

Hotspot Patterns. Oizumi [22] studied architectural smells by

clustering classical code smells using syntactic and semantic

structures. Fontana et al. [23, 24] summarized the previous

work and developed a tool named ARCAN to support the

automatic detection of these smells. Our work explores the

independence and combination of different dependency types

but not summarizing architectural anti-patterns.

III. METHODOLOGY

In this section, we present our systematical study regarding

to the impact of different dependency structures on software

defects. It is not possible for us to directly answer this question

by executing defect prediction tools given the large number

of them. Instead, we leverage DRSpace, a state-of-the-art

reverse engineering technique, to investigate different types

of relations among files, and their interaction with the set

of buggy files. Fig. 3 shows the overview of our research

framework that includes three components: Data Collection,

DRSpaces Generation and Issue Analysis.

A. Data Collection

Here we introduce the subjects we studied, the three types

of relation we extracted, and the defect information collected

from these subjects.

1) Subjects: We studied the latest versions of 117 projects

from the Apache community2. These projects vary in sizes,

domains and functionalities, and most of them are widely used

in defect prediction research. The number of files in these

projects varies from 236 to 7216. The number of lines of

code (LOC) in these projects varies from 11K to 1M. We

additionally crawled the revision history of these projects from

the version control system (Git3), and bug reports from the

issue tracking system (JIRA4). We only study bug reports that

have been fixed. In total, we collected 643,079 commits and

101,364 valid bug reports.

2) Software Relation Extraction: For each subject, we

extract its structural relation, history relation, and semantic

relation as follows:

a) Syntactic Relation: Syntactic dependency is the most

commonly used relation among source files, including in-

heritance, implementation, method call, field access, type

reference, instance creation, etc. We employed Understand5,

a commercial reverse-engineering tool, to extract structural

relations among source files, and denote the collected syntactic

relation as E1.

b) History Relation: History relation, also known as

evolutionary coupling, is derived from the revision history

of a project, modeling the co-change probability among files.

In our study, we employed the history coupling probability

(HCP) matrix [25], a conditional probability model to manifest

how likely a change to a file may influence other files. We

implemented this algorithm and configure the HCP parameters

following the work of Xiao et al. [25]. We denote the collected

history relation as E2.

c) Semantic Relation: Semantic relation is derived from

the source code lexicon to capture the textual similarity

between files. Here we employed relation topic model (RTM)

[26, 27], a probabilistic topic modeling technique, to capture

the semantic relation among files based on source code identi-

fiers and comments. We crawled the lexical information using

the lexicon parser in Understand, and implemented RTM using

the lda6 package of R. We configure the RTM parameters

following the work of Bavota et al. [28], and denote the

collected semantic relation as E3.

We can thus model a software system as a directed multi-

graph: (V,E1,E2,E3), where V represents the set of files

within the system, and E1, E2, E3 represent the syntactic

2http://www.apache.org/
3https://git-scm.com/
4https://www.atlassian.com/software/jira
5https://scitools.com/
6http://cran.rproject.org/web/packages/lda/
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Fig. 3: Research Framework

relation, history relation and semantic relation among these

files respectively.

3) Defect Information Extraction: From each project, we

also extracted defect information from bug reports recorded in

its issue tracking system. For each bug report (BRi), we collect

the set of files changed to fix it, and the lines of code (LOC)

spent on these fixes. We model these data as follows:

BRi = {(Fj,Churn(BRi,Fj)) | j = 1, 2, ...,m} (1)

where m represents the number of files involved in the bug

(BRi). Here each bug is modeled as a set of pairs, each

containing two elements: Fj and Churn(BRi,Fj), representing

the fixed file and the number of lines of code spent on it to

fix the bug.

We also model the relation between bugs and source files

as follows:

Fj = {(BRi,Churn(BRi,Fj)) | i = 1, 2, ..., n} (2)

where n represents the number of bugs a file (Fj) is involved.

Here each file is mapped to a set of pairs, each containing two

elements: BRi and Churn(BRi,Fj), representing an involving

bug and the number of lines of code spent to fix it.

B. DRSpace Generation

In this section, we introduce our method of managing

various dependency structures using Design Rule Spaces

(DRSpaces) [8], a new architecture model.

1) Generating DRSpace: Xiao et al. proposed that a soft-

ware system can and should be viewed as multiple overlapping

design spaces that can be reverse-engineered from source code.

For example, a feature implemented, or a pattern applied,

can be viewed as an individual design space that contains

all the files participating in the feature/pattern [8]. They also

mentioned that different dependency types, such as inheritance

and method call, can form their own design spaces.

Based on this rationale, they proposed a Design Rule Space

(DRSpace) [8] model, each capturing one design space of the

system. In a DRSpace, the files are clustered into hierarchical

layers, and each layer is decoupled into independent modules.

Files in lower layers only depend on the files in higher layers.

Files in different modules within the same layer are mutually

independent from each other. Moreover, each DRSpace has

one or a few leading files, and all other files are directly or in-

directly depend on the leading files. For example, an observer

pattern DRSpace must contain an observer interface, upon

which all other pattern participants depend. The files within a

DRSpace can have one or more types of dependencies. This

architecture model is consistent with the definition proposed

by Bass et al. [29]: the architecture of a software system is a

set of structures, and each DRSpace is one of many module

structures within the system.

In our study, we examine a software structure through the

lenses of DRSpaces. For each subject, using the three types

of relations extracted, we model the project using a suite of

DRSpaces: Syntactic DRSpaces (SynDR), History DRSpaces

(HisDR), and Semantic DRSpaces (SemDR), in which source

files only have syntactic relation, history coupling relation, and

semantic coupling relation respectively.

2) Generating Sub-DRSpace: Using each file as a leading

file, we further split each DRSpace into a set of sub-DRSpaces:

DRSpace =
{

sub-DRSpacej | j = 1, 2, ...,m
}

(3)

where m is the total number of sub-DRSpaces. Each sub-

DRSpace (sub-DRSpacej) consists of two elements:

sub-DRSpacej = (Fj, Suboridnate(Fj)) (4)

where Fj represents the leading file of the sub-DRSpace and

Suboridnate(Fj) represents the files that directly or indirectly

depend on the leading file.

For each subject with x files that have syntactic relation

with other files, y files having history coupling with other files,

and z files having semantic relation with other files, we will

generate x syntactic sub-DRSpaces, y history sub-DRSpaces,

and z semantic sub-DRSpaces.
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(a) Syntactic (b) History (c) Semantic

Fig. 4: Three Dependency Structures of Log4j

(a) Syntactic (b) History (c) Semantic

Fig. 5: Three DRSpaces of Log4j

C. Issue Analysis

For each subject, given the three DRSpaces and their sub-

DRSpaces, we now present our method of analyzing their

relations with defective, i.e., error-prone files.

Following the work of Xiao et al. [8], we first use a

BugSpace to model the set of files involved in bug fixing.

We use BugFre x%ile to model the set of files within the top

xth percentile of a BugSpace, ranked based on the number of

times they were changed for bug-fixing (bug frequency). We

also use BugChurn x%ile to model the most expensive files,

ranked within the top xth percentile based on their lines of

code (LOC) spent on bug fixing (bug churn).

ArchRoot [8, 30] is a greedy algorithm designed to extract

a set of sub-DRSpaces that covers a target set of error-

prone files, that is, files within a bug space BugFre x%ile, or

BugChurn x%ile. The input of this algorithm is a DRSpace

containing all the files within the system, and a target bug

space. ArchRoot iteratively inspects each sub-DRSpace and

calculates its intersection with the target bug space, and return

a set of sub-DRSpaces. In our study, we denote the union of

all the files within the sub-DRSpaces calcuated from ArchRoot

as a RootSpace.

D. Running Example

In this section, we demonstrate these concepts and our

method using a running example, Log4j 2.8.27, a distributed

logging system.

Data Collection. We extracted the syntactic relation and

semantic relation from Log4j, version 2.8.2. In this snapshot,

there are 1702 files, and 8823 pairs of them have structural

relations, and 2678 pairs have at least 70% semantic similarity.

To extract history coupling relation, we collect 9425 revision

commits from May 2010 to Aug 2017. Within this time

period, there are 137 file pairs having at least 30% co-change

probability. Within the same history period, we collected 634

bug reports that have been resolved, and there are 136 files

changed to fix these bugs.

7https://logging.apache.org/log4j/2.x/

We employ Gephi8, an open source graph visualization

platform, to model these three relations as graphs, as shown

in Fig. 4 (a)-(c). These graphs depict the syntactic structure,

history structure, and semantic structure among Log4j source

files, in which vertexes represent files and edges represent

different relations among them. As we can see from these

graphs, the overall structure formed by these relations are very

different.

DRSpace and Sub-DRSpace Extraction. For each relation,

we generate its DRSpace using Titan [31], a visualization tool

that present file structures using Design Structure Matrices

(DSMs). A DSM is a square matrix in which rows and columns

are labeled by the same set of files in the same order. A marked

cell in row x and column y, cell(x, y), means that the file in

row x depends on the file in column y. The marks in the

cells can be used to denote different types of relations. Fig.

5.(a)-(c) depicts the Syntactic DRSpace, History DRSpace and

Semantic DRSpace of Log4j. Similar to Fig. 4, we can observe

that these structures are drastically different.

For each DRSpaces, we decouple it into a set of sub-

DRSpaces, each led by one file within the DRSpace. Fig.

6-8 depicts the syntactic sub-DRSpace, history sub-DRSpace

and semantic sub-DRSubpaces led by the same leading file:

FileManager of Log4j. We explain these DSMs as follows:

Fig. 6 shows the syntactic sub-DRSpace led by

FileManager. Cell(5, 1) is labeled with “dp”, which

means that DefaultRolloverStrategy syntactically depends

on FileManager. Fig. 7 shows its history sub-DRSpace.

Cell(5, 1) is labeled with “(hc, 30%),#7”. “(hc, 30%)”
means that DefaultRolloverStrategy is historically coupled

with FileManager and the co-change probability is 30%.

“#7” means that these two files changed together 7 times as

recorded in the commit history. Fig. 8 shows the semantic

sub-DRSpace led by the same file. Cell(5, 1) is labeled with

“(sc, 82%)”, which means that DefaultRolloverStrategy has

82% lexical similarity with FileManager.

Issue and Root Analyses. The sub-DRSpaces shown in Fig.

6-8 are among the output sub-DRSpaces of the ArchRoot

algorithm. The input of this algorithm includes each DRSpace

and all the files involved in bug fixing, e.g. BugFeq 100%ile.

This means that these sub-DRSpaces cover all the error-prone

files and reveal their relations.

For example, the columns FR and CR illustrate the rankings

of each file based on its bug frequency and bug churn. As we

can see, in addition to the leading file, DefaultRolloverStrategy

and RollingFileManager are ranked within top 1%ile and

top 2%ile resprectively, and are captured by all three sub-

DRSpaces. Other than that, however, the files captured by

these sub-DRSpaces are very different. Next we explore if

and to what extent their ability of capturing buggy files are

different.

IV. EXPERIMENT

In this section, we present our exploration of the following

three research questions to understand the impact of different

8https://gephi.org/
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Fig. 6: Syntactic sub-DRSpace of FileManager

Fig. 7: History sub-DRSpace of FileManager

dependency types, syntactic, history and semantic, on software

defect prediction/localization:

RQ1: What is the structural similarity among these different

types of relations?

The answer to this question will advance our understanding

regarding to the overall differences of these three relations.

RQ2: Does each dependency structure present similar per-

formance in terms of capturing defective files?

The answer to this question will shed lights on their

differences in terms of locating or predicting bugs.

RQ3: Can the combination of these three structures improve

the accuracy of predicting/locating defects? What about their

intersection and union?

The answer to this question will provide suggestions regard-

ing to how different relations can be better leveraged.

A. Structural Similarity

1) Approach: To answer RQ1, we measure the overall

similarity among these three different relations using MoJoFM

[32], and use C2C [18] to measure the local similarity among

sub-DRSpaces lead by the same file. As references, we em-

ployed several state-of-the-art reverse-engineering techniques

from the ARCADE [33] toolkit for comparison. The related

concepts are listed as follows:

MoJoFM [32] is a distance score measuring between two

structures, expressed as a percentage, computed as follows:

MoJoFM (A,B) = 1−

(
mno (A,B)

max (mno (∀A,B))

)
× 100% (5)

where mno (A,B) is the minimum number of Move or Join

operations needed to transform structure A into structure B.

MoJoFM returns 0% if the two architectures are completely

different. While MoJoFM returns 100% if the two architec-

tures are same. The higher the score, the more similar the two

structures are.

C2C [18] measures to what extent two sub-DRSpaces with

the same leading file overlap. Given two sub-DRSpaces: SA

and SB with the same leading file but different substructures:

C2C(A,B) =

{
SA∩SB
SA∪SB

|SA|, |SB| �= 0

0 other
(6)

Fig. 8: Semantic sub-DRSpace of FileManager

TABLE I: The MoJoFM Matrix

Technique SynDR HisDR SemDR ACDC ARC

SynDR - 8%* 22%* 27% 26%

HisDR - - 24%* 16% 12%
SemDR - - - 19% 22%
ACDC - - - - 39%
ARC - - - - -

where |SA| and |SB| represent the number of files contained

in SA and SB respectively.

ARCADE [33] is a software toolkit for reverse-engineering

architectural design from source code. We use two state-of-

the-art reverse-engineering techniques, ACDC [12] and ARC

[13] from ARCADE as references.

2) Results: Table I demonstrates the MoJoFM results as

a square matrix, where rows and columns are labeled by

the same set of recovery techniques in the same order. The

cells contain the average MoJoFM scores. Since the matrix

is symmetric, only half of the cells are labeled with scores.

For instance, the cell (2,3) is marked with “24*%”, meaning

that the average MoJoFM score between history (HisDR) and

semantic (SemDR) DRSpaces of the 117 projects is 24%.

Fig 9 demonstrates the distribution of C2C scores among

three dependency structures. The x-axis in Fig. 9 represents

the C2C results, which is divided into 10 intervals ranging

from 0 to 100%. The y-axis represents the percentage of sub-

DRSpaces pairs whose C2C scores fall into the given interval.

For example, the first bar in Fig. 9 (a) shows that there are

28.4% of syntactic-history sub-DRSpace pairs have less than

10% similarity.

3) Observations: The syntactic relation, history relation,

and semantic relation present drastically different overall

structures (<25%): the cells in Table I marked with ‘*’

denotes the average MoJoFM scores among the syntactic,

history and semantic structures of the 117 projects (8%-24%).

The three DRSpaces, SynDR, HisDR, and SemDR, are also

different from the structures derived from the state-of-the-art

reverse engineering techniques: their similarity scores with

ACDC and ARC are less than 30%: the cells in Table I not

marked with ‘*’ denote the average MoJoFM score between

DRSpaces vs. ACDC/ARC (5%-27%).

The syntactic structure, history structure, and semantic

structure also appear to be significantly different when

comparing sub-DRSpaces. Fig. 9 demonstrates that 42%-

58% of sub-DRSpace pairs present relative low similarities

(<30%), and only 7%-24% of sub-DRSpace pairs present

higher similarities (>70%).

B. The Relation between Dependency and Software Defects

1) Approach: Here we investigate the relation between

each dependency type and software defects, to answer RQ2.
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(a) Syntactic vs History sub-DRSpace (b) Syntactic vs Semantic sub-DRSpace (c) History vs Semantic sub-DRSpace

Fig. 9: The distribution of C2C

(a) Syntactic Structure (b) History Structure (c) Semantic Structure

Fig. 10: The Distribution of Precision/Recall to Cover BugSpace (The x-axis represents the precision and the y-axis represents

the recall)
TABLE II: The Precision/Recall to Cover BugFre x%ile and BugChurn x%ile

BugFre x%ile BugChurn x%ile
Syntactic History Semantic Syntactic History SemanticPercentage

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

10%ile 9.92% 99.29% 43.77% 31.12% 33.32% 43.49% 10.42% 99.78% 43.72% 32.32% 35.81% 41.98%
20%ile 14.43% 99.36% 48.36% 26.36% 35.63% 43.11% 14.39% 99.67% 46.98% 26.57% 35.99% 42.80%
30%ile 18.34% 99.40% 52.12% 23.86% 38.09% 42.65% 18.77% 99.31% 49.52% 23.06% 38.39% 42.54%
40%ile 22.35% 99.41% 55.55% 22.55% 40.23% 42.47% 22.39% 99.17% 52.61% 21.50% 40.15% 42.48%
50%ile 26.17% 99.39% 58.04% 21.17% 43.52% 42.15% 25.75% 99.05% 55.47% 20.13% 42.50% 42.24%
60%ile 29.47% 99.30% 61.13% 19.96% 46.37% 41.94% 29.18% 98.73% 58.81% 19.28% 45.50% 41.85%
70%ile 32.68% 99.22% 64.35% 19.14% 49.21% 41.64% 32.30% 98.71% 62.24% 18.76% 48.19% 41.46%
80%ile 35.79% 99.03% 67.47% 18.72% 51.99% 41.12% 35.55% 98.67% 66.13% 18.34% 50.80% 41.20%
90%ile 39.07% 98.80% 70.35% 18.02% 54.40% 40.69% 38.63% 98.52% 70.05% 17.88% 53.92% 40.89%
100%ile 41.87% 98.52% 73.91% 17.69% 56.92% 40.46% 41.87% 98.52% 73.91% 17.69% 56.92% 40.46%

We first define a specific set of error-prone files as Tar-

getSpace, which can be either files frequently involved in bug

fixing— BugFre x%ile, or files that are most expensive to

fix—BugFre x%ile. To answer RQ2, we employed multiple

TargetSpaces, from BugFre 10%ile to BugFre 100%ile, and

from BugChurn 10%ile to BugChurn 100%ile. For each Tar-

getSpace, we use the ArchRoot algorithm to locate its corre-

sponding RootSpace and calculate its Precision and Recall as

follows:

Precision =
|RootSpace ∩ TargetSpace|

|RootSpace|
(7)

Recall =
|TargetSpace ∩ BugSpace|

|BugSpace|
(8)

For each DRSpace formed using syntactic, history, or se-

mantic relation, and each TargetSpace, we run the ArchRoot

algorithm and calculate their precision and recall scores.

2) Results: Table II presents the average precision and

recall scores of the 117 subjects to cover from BugFre 10%ile

to BugFre 100%ile, and from BugChurn 10%ile to

BugChurn 100%ile using syntactic structure, history

structure, and semantic structure respectively. Fig. 10 depicts

the distribution of precision/recall scores of these subjects,

where each point represents a subject. Fig. 11 demonstrates

the trend of these scores in Table II.
3) Observations: The syntactic structure, history struc-

ture, and semantic structure present completely different

coverage over bug-prone files (BugSpace). The results in Ta-

ble II and Fig. 10 demonstrate that syntactic structures present

the highest recall (98.5%) but the lowest precision (41.9%) on

average. This is not surprising because the syntactic structure

contains the largest number of files.

On the contrary, history structures present the highest

precision (73.9%) but the lowest recall (17.7%), which is

understandable since not all buggy files have to be historically

coupled with other files. The result of semantic structure is in-

between, 56.9% precision and 40.5% recall on average.

In summary, the three relations present significantly dif-

ferent capabilities in term of covering error-prone files. The
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(a) BugFre x%ile Covered by Syn-
tactic Structure

(b) BugChurn x%ile Covered
bySyntactic Structure

(c) BugFre x%ile Covered by His-
tory Structure

(d) BugChurn x%ile Covered by
History Structure

(e) BugFre x%ile Covered by Se-
mantic Structure

(f) BugChurn x%ile Covered by Se-
mantic Structure

Fig. 11: The Trend of Precision/Recall results of Covering

BugFre x%ile and BugChurn X%ile (The x-axis represents

the BugFre x%ile/BugChurn x%ile and the y-axis represent

the precision/recall)

implication is that, using just one of these relations to conduct

bug prediction/localization will not be sufficient.

C. Dependency Interaction and the Impact on Software defects

1) Approach: To answer RQ3, we exhaustively studied the

intersection and union of syntactic structure, history structure,

and semantic structure. In total, we generated 8 combinations

of these three dependency structures, measured their interac-

tion with two representative TargetSpaces, BugFre 10%ile and

BugFre 100%ile, and made a systematic comparison.

Generating Combinations: The 8 combinations include: Syn

∩ His, Syn ∩ Sem, His ∩ Sem, Syn ∩ His ∩ Sem, Syn ∪ His,

Syn ∪ Sem, His ∪ Sem, and Syn ∪ His ∪ Sem, where Syn, His

and Sem are the abbreviation for syntactic structure, history

structure, and semantic structure. The notation, ∪, represents

the union operator and ∩ represents the intersection operator.

Combination measures: For each combination, we gener-

ated its DRSpace, and calculated sub-DRSpaces covering two

TargetSpaces: BugFre 10%ile and BugFre 100%ile using the

ArchRoot algorithm to generate a RootSpace. As an example,

consider the union of the three structures: (Syn ∪ His ∪ Sem).

Fig. 12 depicts its sub-DRSpace led by FileManager in Log4j.

To measure these results, in addition to precision and recall,

we also employ three additional metrics as follows:

File% measures the percentage of files involved in each

combination.

BFR, following the work of Mo et al. [21], measures the

average bug frequency of each file in a calculated RootSpace

versus the average bug frequency of all the files within the

BugSpace, defined as:

BFR =
BugFre (RootSpace)

BugFre (BugSpace)
×

|BugSpace|

|RootSpace|
× 100% (9)

where |RootSpace| and |BugSpace| represent the number of

files involved in them. BugFre (RootSpace) represents the sum

of the number of bug fixes for each file involved in RootSpace.

BCR, similarly, measures the average bug churn of each file

in a calculated RootSpace versus the average bug churn of all

the files within the BugSpace, defined as

BCR =
BugChurn (RootSpace)

BugChurn (BugSpace)
×

|BugSpace|

|RootSpace|
× 100% (10)

where |RootSpace| and |BugSpace| represent the number of

files involved in them. BugChurn (RootSpace) represents the

sum of the lines of code in bug fixes for each file involved in

RootSpace.

We use an example to illustrate BFR and BCR. For a

BugSpace with three files: {A,B,C}, its involved bug frequen-

cies and churn are listed as follows: (3,100), (2,200) and

(1,300). For a generated RootSpace: {A,B}, to calculate BFR,

the results of BugFre (RootSpace) and BugFre (BugSpace) are

counted as 5 and 6 respectively. According to formula (9),

the result of BFR should be (5/6)*(3/2) = 125%, meaning that

the average bug frequency of the files within the RootSpace is

higher than the average file within the bug space. The result

of BCR should be (300/600)*(3/2) = 75%, meaning that the

average bug churn of files within the RootSpace is lower than

the average file within the bug space.

In summary, BFR and BCR are used to measure the average

maintenance cost of the RootSpaces calculated from these

combinations, using the average scores of the BugSpace as

a baseline.

2) Results: Table III presents the results. The columns Type

and Formula present the details of each combination. For each

combination, the other columns present the average scores of

the 117 subjects to cover BugFre 10%ile and BugFre 100%ile

(i.e. the overall BugSpace) respectively.

3) Observations: The intersection of syntactic, history,

and semantic relations merely covers 0.82% of all the bug-

prone files (BugSpace) but shows nearly 80% precision and

over 500% bug frequency/churn rate. Table III shows that

the intersection of these three structures only occupy 0.28%

of all the files on average. It can also capture the 2.63% of

the most bug-prone files BugFre 10%ile with a relative high

precision (nearly 50%).

The union of syntactic structure, history structure and

semantic structure covers the 99.3% of all the bug-prone

files(BugSpace) with 43.4% precision and almost 80% bug
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TABLE III: The Interaction of Dependency Structures

Type Formula File%
BugFre 10%ile BugSpace

Precision Recall BFR BCR Precision Recall BFR BCR

Syn (V,E1) 96.38% 10.42% 99.78% 262.50% 210.84% 41.90% 98.50% 70.97% 71.14%
His (V,E2) 8.41% 43.72% 32.32% 2111.37% 1314.45% 73.90% 17.70% 918.09% 560.08%
Sem (V,E3) 35.11% 36.36% 44.45% 1294.51% 862.57% 56.90% 40.50% 284.20% 188.26%

Syn ∩ His (V,E1 ∩ E2) 3.77% 49.12% 15.94% 2802.91% 1332.68% 76.06% 8.13% 1236.42% 602.38%
Syn ∩ Sem (V,E1 ∩ E3) 16.25% 46.52% 31.38% 1732.65% 1057.02% 68.45% 22.05% 551.94% 337.46%
His ∩ Sem (V,E2 ∩ E3) 0.71% 50.97% 4.13% 2846.15% 1566.86% 79.62% 1.88% 1197.66% 562.91%
Syn ∩ His ∩ Sem (V,E1 ∩ E2 ∩ E3) 0.28% 49.94% 2.63% 3043.47% 1536.33% 79.46% 0.82% 1210.64% 524.09%

Syn ∪ His (V,E1 ∪ E2) 96.52% 10.54% 99.84% 267.19% 214.68% 42.11% 98.76% 72.55% 72.06%
Syn ∪ Sem (V,E1 ∪ E3) 96.71% 10.52% 99.79% 263.60% 205.87% 41.94% 98.76% 74.25% 73.53%
His ∪ Sem (V,E2 ∪ E3) 40.52% 34.85% 62.72% 1161.97% 831.25% 59.46% 52.96% 298.47% 243.59%
Syn ∪ His ∪ Sem (V,E1 ∪ E2 ∪ E3) 97.50% 14.28% 100.0% 424.21% 339.84% 43.45% 99.37% 84.81% 83.29%

Fig. 12: The Combination of Syntactic, History, and Semantic sub-DRSpaces

frequency/churn rate. Table III shows that the union of these

three structures occupy 97.5% of all the files on average, and

can capture all the most bug-prone files (BugFre 10%ile)

with a relative low precision (14.28%).

For intersections of two dependency structures, the

intersection of syntactic structure and semantic structure

(Syn ∩ Sem) shows a higher recall rate (22.05%) to cover

all the bug-prone files (BugSpace); the intersection of

history structure and semantic structure (His ∩ Sem) shows

a higher precision rate (79.62%) to cover all the bug-prone

files (BugSpace). The intersection of syntactic structure and

semantic structure (Syn ∩ Sem) captures 16.25% of all the files.

It also covers the most bug-prone files (BugFre 10%ile) with

46.52% precision rate and 31.38% recall rate. The intersection

of history structure and semantic structure (His ∩ Sem) only

captures 0.71% of all the files, which covers the most bug-

prone files (BugFre 10%ile) with a higher precision rate

(50.97%) and a lower recall rate (4.13%). The intersections

involving history relation can improve the precision by 23%-

38%. The intersections involving semantic structure can also

improve the precision by 12%-38%.

For unions of two dependency relations, the union of

syntactic structure and history structure (Syn ∪ His) covers

98.76% of all the bug-prone files (BugSpace); the union

of history structure and semantic structure (His ∪ Sem)

shows a higher precision rate (59.46%). The union of

syntactic structure and history structure (Syn ∪ His) captures

96.52% of all the files, which also covers the most bug-

prone files (BugFre 10%ile) with 10.54% precision rate and

99.84% recall rate. The union of history structure and semantic

structure (His ∪ Sem) captures 40.52% of all the files, which

covers the most bug-prone files (BugFre 10%ile) with a higher

precision rate (34.85%) and a lower recall rate (62.72%). The

unions involving syntactic structure can improve the recall by

58%-81%.

V. RESULT DISCUSSION

In this section, we discuss the results and answer the three

research questions.

RQ1: The result of RQ1 reveals that the syntactic relation,

history relation, and semantic relation present significantly

different structures. Intuitively, this implies that these three

relations will perform drastically different when they are used

to predict or locate software defects. The result of RQ1 also

reveals that these three dependency relations present different

architecture views from the state-of-the-art reverse engineering

techniques. This may provide a new perspective to recover

architecture using these three dependency structures directly.

RQ2: The result of RQ2 demonstrates that the syntactic

relation, history relation, and semantic relations are signifi-

cantly different in terms of their ability to capture error-prone

files. The syntactic structure shows the advantage of covering

most defective files, while the history structure and semantic

structure show the advantage of improving the coverage ac-

curacy. The indication is that when performing bug location,

prediction, and prioritization tasks, these relations should be

considered and compared separately.

RQ3: The result of RQ3 is unexpected. The intersection

of these relations only covers a rather small portion of defects

(0.82%) but with high precision scores. However, the union

of them can almost cover all the defects (99.37%). These

results demonstrate that these three dependency structures are

independent and complementary. The high recall rate implies

that these three dependency structures are enough for defect

prediction/localization. However, the precision of their union

is merely 43.45%. Thus, we can focus on how to improve

the precision using these three structures. The results of inter-

sections/unions for two structures provide us an intuitive way.
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Compared with using one dependency structure, the combina-

tions involving syntactic structure could further improve the

coverage recall. The combinations involving history structure

and semantic structure can improve the coverage precision.

This inspires us to design proper strategies to combine these

three structures together to improve the accuracy of defect

prediction/localization.

VI. THREAT TO VALIDITY

In this section, we discuss the threats to validity and

limitation of our study.

1) Internal threats: First, for each subject, we collect

commit data, generate history relation, and derive bug reports

from the beginning of its revision history to the latest release.

Prior research [34] suggested that if only recent history is

used, the result could be different. To validate our work, we

recalculate the data, extracting history relation and bug reports

from the most recent 3 releases of each subject. The results

showed that specific bug frequency and churn ranking orders

are different, but the general conclusions are exactly the same.

Second, we set the thresholds for determining history cou-

pling and semantic coupling according to previous studies. It

is unclear whether these threshold settings are generalizable.

To eliminate this threat, we conducted a large scale study

using 117 open source projects, and manually inspected the

generated relations for 5 projects. We confirmed that the

extracted software relations are reasonable.

Third, for syntactic structure, history structure and semantic

structure, we employed DRSpaces to understand the archi-

tectural design. In the future, we will use various reverse-

engineering techniques and make a systematical comparison

of their influence on software quality.

Fourth, for each dependency structure, we employ the

ArchRoot algorithm to calculate its interactions with buggy

files. ArchRoot is a greedy algorithm whose effectiveness and

efficiency can be further improved. In the future, we will

also design pruning strategies to make more detailed and

comparative analyses.

Finally, our research aims at investigating the correlation

between dependency relations and file error-proneness, but not

causality. We do not have evidence how dependency causes

the presence of defects. In our future work, we will explore

the causality relation by studying each bug report and its

introduced change.

2) External threats: The first threat comes from locating

buggy files using bug reports. Following prior history-based

bug prediction work [4, 8], we link these bug reports with

its fixing commits by heuristically searching BugIDs from

revision messages. However, researchers have [35] pointed out

that, developers may commit bug fixes using wrong bugID or

even without reporting bugID. In these cases, our approach

may be biased. To eliminate this threat, we select the Apache

Open Projects and study bug reports from its issue tracking

system: JIRA. The bug report information in JIRA for Apache

projects is manually entered by experts, containing less noise.

In our future work, we plan to study the impact of missing

links to bug reports.

The second threat comes from the chosen subjects. We

intensively studied 117 Apache open source projects. It is still

unclear whether our observations will generalize to closed-

source industrial projects and open-source projects from other

communities. Studying more subjects is our ongoing work.

The final threat comes from the imbalance problem, which

is a common problem in machine learning and defect predic-

tion. However, our objective is to investigate the differences

of the three major dependency types, not to propose a new

defect prediction/localization algorithm.

VII. CONCLUSION

In this paper, we presented our systematic study on the re-

lation between file error-proneness and syntactic dependency,

history dependency, and semantic dependency. We conducted

our study on 117 Apach open source projects involving

643,079 revision commits and 101,364 bug reports. Supported

by DRSpaces, for each dependency type, we created its overall

DRSpace, split it into a set of sub-DRSpaces, and calculated

their interactions with bug spaces. We investigated three re-

search questions using these data. The results demonstrated

the independence and complementary nature of these three

dependency types, and their drastically different impact on

file error-proneness. We also presented a suite of qualitative

and quantitative results, which provide new insights that may

benefit defect prediction, localization, and prioritization.
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